Enterococcus faecalis surface proteins determine its adhesion mechanism to bile drain materials

Abstract
An important step in infections associated with biliary drains is adhesion of micro-organisms to the surface. In this study the role of three surface proteins of Enterococcus faecalis (enterococcal surface protein, aggregation substances 1 and 373) in the adhesion to silicone rubber, fluoro-ethylene-propylene and polyethylene was examined. Four isogenic E. faecalis strains with and without aggregation substances and one strain expressing enterococcal surface protein were used. The kinetics of enterococcal adhesion to the materials was measured in situ in a parallel plate flow chamber. Initial deposition rates were similar for all strains, whereas the presence of surface proteins increased the total number of adhering bacteria. Nearest neighbour analysis demonstrated that enterococci expressing the whole sex-pheromone plasmid encoding aggregation substances 1 or 373 adhered in higher numbers through mechanisms of positive cooperativity, which means that adhesion of bacteria enhances the probability of adhesion of other bacteria near these bacteria. Enterococci with the enterococcal surface protein did not adhere through this mechanism. These findings indicate that the surface proteins of E. faecalis play a key role in the adhesion to bile drains and bile drain associated infections.