Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343

Abstract
The genus Gluconobacter is well known for its rapid and incomplete oxidation of a wide range of substrates. Therefore, Gluconobacter oxydans especially is used for several biotechnological applications, e.g., the efficient oxidation of glycerol to dihydroxyacetone (DHA). For this reaction, G. oxydans is equipped with a membrane-bound glycerol dehydrogenase that is also described to oxidize sorbitol, gluconate, and arabitol. Here, we demonstrated the impact of sldAB overexpression on glycerol oxidation: Beside a beneficial effect on the transcript level of the sldB gene, the growth on glycerol as a carbon source was significantly improved in the overexpression strains (OD 2.8 to 2.9) compared to the control strains (OD 2.8 to 2.9). Furthermore, the DHA formation rate, as well as the final DHA concentration, was affected so that up to 350 mM of DHA was accumulated by the overexpression strains when 550 mM glycerol was supplied (control strain: 200 to 280 mM DHA). Finally, we investigated the effect on sldAB overexpression on the G. oxydans transcriptome and identified two genes involved in glycerol metabolism, as well as a regulator of the LysR family.

This publication has 28 references indexed in Scilit: