Transfer and stability of drug resistance plasmids inEscherichia coli K12

Abstract
Mating experiments between pairs of strains ofEscherichia coli containing either the compatible plasmids TP120 (Inc N) and R1 (Inc FII) or the incompatible plasmids TP125 (Inc B) and TP113 (Inc B) were undertaken in mixed continuous-flow cultures and in dialysis sacs suspended in pond water. Plasmid transfer was readily demonstrated between strains carrying compatible plasmids TP120 and R1 in both continuous-flow culture and pond water. In mixed cultures of strains carrying plasmids TP125 and TP113, transfer was only observed in continuous-flow culture systems. Strains ofE. coli containing aggregates of plasmids TP120 and R1 were shown to be stable over 5 months continuous cultivation under carbon limited conditions at a growth rate of 0.1 hours−1 in the presence of drugs which select for the maintenance of both plasmids. In the strains containing plasmid aggregates, a gene dosage effect was observed with respect to the levels of resistance to drugs whose resistance was encoded by both plasmids. Chemostat experiments showed that no cointegrate plasmids were found from the strains ofE. coli initially containing both plasmid TP120 and plasmid R1.