The synthesis and polymerization behaviour of silicon-bridged [1]- and [2]ferrocenophanes with sterically demanding trimethylsilyl substituents attached to the cyclopentadienyl rings

Abstract
The silicon-bridged [1]ferrocenophane Fe(η-C5H3SiMe3)2(SiMe2) (5) was synthesized via the reaction of Li2[Fe(η-C5H3SiMe3)2]•tmeda (tmeda = tetramethylethylenediamine) with Me2SiCl2 in hexanes. The disilane-bridged [2]ferrocenophane Fe(η-C5H3SiMe3)2(Si2Me4) (7) was prepared using a similar route from the disilane ClMe2SiSiMe2Cl. Despite the presence of sterically demanding SiMe3 substituents on the cyclopentadienyl rings, compound 5 was found to undergo thermal ring-opening polymerization at 170 °C to produce very soluble, high molecular weight poly(ferrocenylsilane) 6 with Mw = 1.4 × 105, Mn = 8.4 × 104. However, the [2]ferrocenophane 7 was found to be resistant to thermal ring-opening polymerization even at 350 °C and decomposed above 380 °C. A single-crystal X-ray diffraction study of 7 revealed that the steric interactions between the bulky SiMe3 groups are relieved by a significant twisting of the disilane bridge with respect to the plane defined by the centroids of the cyclopentadienyl ligands and the metal atom. The angle between the planes of the cyclopentadienyl rings in 7 was found to be 5.4(6)°, slightly greater than that in the non-silylated analogue Fe(η-C5H4)2(Si2Me4) (4a) (4.19(2)°), and dramatically less than the corresponding tilt angle of the strained, polymerizable, silicon-bridged [1]ferrocenophane Fe(η-C5H4)2(SiMe2) (1) (20.8(5)°). The length of the Si—Si bond in 7 (2.342(3) Å) was found to be close to the sum of the covalent radii (2.34 Å). Crystals of 7 are monoclinic, space group C2/c, with a = 23.689(3) Å, b = 11.174(1) Å, c = 31.027(3) Å, β = 109.16(1)°, V = 7758(2) Å3, and Z = 12. Keywords: ring-opening polymerization, ferrocenophane, organometallic polymers.