Projections of the cochlear nuclei and nucleus laminaris to the inferior colliculus of the barn owl

Abstract
The barn owl determines the directions from which sounds emanate by computing the interaural differences in the timing and intensity of sounds. These cues for sound localization are processed in independent channels originating at nucleus magnocellularis (NM) and nucleus angularis (NA), the cochlear nuclei. The cells of NM are specialized for encoding the phase of sounds in the ipsilateral ear. The cells of NA are specialized for encoding the intensity of sounds in the ipsilateral ear. NM projects solely, bilaterally, and tonotopically to nucleus laminaris (NL). NL and NA project to largely nonoverlapping zones in the central nucleus of the inferior colliculus (ICc), thus forming hodological subdivisions in which time and intensity information may be processed. The terminal field of NL occupies a discrete zone in the rostromedial portion of the contralateral ICc, which we have termed the “core” of ICc. The terminal field of NA surrounds the core of ICc and thus forms a “shell” around it. The projection from NL to the core conserves tonotopy. Low-frequency regions of NL project to the dorsal portions of the core whereas higher-frequency regions project to more ventral portions. This innervation pattern is consistent with earlier physiological studies of tonotopy. Physiological studies have also suggested that NL and the core of ICc contain a representation of the location of a sound source along the horizontal axis. Our data suggest that the projection from NL to the core preserves spatiotopy. Thus, the dorsal portion of NL on the left, which contains a representation of eccentric loci in the right hemifield, innervates the area of the right ICc core that represents eccentric right loci. The more ventral portion of the left NL, which represents loci close to the vertical meridian, innervates the more rostral portions of the right core, which also represents loci near the vertical meridian.

This publication has 47 references indexed in Scilit: