The Robustness of Several Estimators of the Survivorship Function with Randomly Censored Data

Abstract
The problem of estimating the survivorship function, R(t) = P(T > t), arises frequently in both engineering and biomedical sciences. In many applications the data one sees are censored due to the occurrence of some competing cause of failure such as withdrawal from the study, failure from some cause not under study, etc. In the biomedical sciences the distribution free estimator suggested by Kaplan and Meier (JASA 1958) is routinely used, while in the engineering sciences a parametric approach is more commonly used. In this report we study the efficiency of these two techniques when a particular parametric model such as the exponential, Weibull, normal, log normal, exponential power, Pareto, Gompertz, gamma, or bathtub shaped hazard distribution is assumed under a variety of censoring schemes and underlying failure models. We conclude that in most cases the parametric estimators outperform the distribution free estimator. The results are particularly striking if the Weibull forms of these estimators are used routinely.

This publication has 17 references indexed in Scilit: