An isopycnic-coordinate oceanic circulation model formulated with the aim of simulating thermodynamically and mechanically driven flow in realistic basins is presented. Special emphasis is placed on the handling of diabatic surface processes and on thermocline ventilation. The model performance is illustrated by a 30-year spinup run with coarse horizontal resolution (2° mesh) in a domain with North Atlantic topography extending from 10° to 60°N latitude. The vertical structure encompasses 10 isopycnic layers in steps of 0.2 σ units, capped by a thermodynamically active mixed layer. From an initially isohaline state with isopycnals prescribed by zonally averaged climatology, the model is forced by seasonally varying wind stress, radiative and freshwater fluxes, and by a thermal relaxation process at the surface. After a mechanical spinup time of about 15 years, a quasi-stationary pattern of mean circulation and annual variability ensues, characterized by pronounced subtropical mode-water formation... Abstract An isopycnic-coordinate oceanic circulation model formulated with the aim of simulating thermodynamically and mechanically driven flow in realistic basins is presented. Special emphasis is placed on the handling of diabatic surface processes and on thermocline ventilation. The model performance is illustrated by a 30-year spinup run with coarse horizontal resolution (2° mesh) in a domain with North Atlantic topography extending from 10° to 60°N latitude. The vertical structure encompasses 10 isopycnic layers in steps of 0.2 σ units, capped by a thermodynamically active mixed layer. From an initially isohaline state with isopycnals prescribed by zonally averaged climatology, the model is forced by seasonally varying wind stress, radiative and freshwater fluxes, and by a thermal relaxation process at the surface. After a mechanical spinup time of about 15 years, a quasi-stationary pattern of mean circulation and annual variability ensues, characterized by pronounced subtropical mode-water formation...