Calculation of the magnetization distribution for fluid flow in curved vessels

Abstract
The signal Intensity in magnetic resonance angiography (MRA) images reflects both morphological and flow-related features of vascular anatomy. A thorough understanding of MRA, therefore, demands a careful analysis of flow-related effects. Computational fluid dynamics (CFD) methods are very powerful in determining flow patterns in 3D tortuous vessels for both steady and unsteady flow. Previous simulations of MRA images calculated the magnetization of flowing blood by tracking particles as they moved along flow streamlines that had been determined by a CFD calculation. This manuscript describes MRA simulations that use CFD calculations to determine magnetization variation at a fixed point and, therefore, do not require streamline tracking to calculate the distribution of magnetization in flowing fluids. This method inherently accounts for uniform particle density, avoids problems associated with tracking particles close to the wall, and is well-suited to modeling pulsatile flow.
Funding Information
  • National Institutes of Health (HL50323)