P58 molecules as putative receptors for major histocompatibility complex (MHC) class I molecules in human natural killer (NK) cells. Anti-p58 antibodies reconstitute lysis of MHC class I-protected cells in NK clones displaying different specificities.
Open Access
- 1 August 1993
- journal article
- Published by Rockefeller University Press in The Journal of Experimental Medicine
- Vol. 178 (2), 597-604
- https://doi.org/10.1084/jem.178.2.597
Abstract
Human CD3-16+56+ natural killer (NK) cells have been shown to display a clonally distributed ability to recognize major histocompatibility complex (MHC) class I alleles. Opposite to T lymphocytes, in NK cells, specific recognition of MHC class I molecules appears to induce inhibition of cytolytic activity and, thus, to protect target cells. Since a precise correlation has been established between the expression of the NK-specific GL183 and EB6 surface molecules (belonging to the novel p58 molecular family) and the specificity of NK clones, we analyzed whether p58 molecules could function as receptors for MHC in human NK cells. NK clones displaying the previously defined "specificity 2" and characterized by the GL183+EB6+ phenotype, specifically recognize the Cw3 allele and thus fail to lyse the Fc gamma R+ P815 target cells transfected with Cw3. On the other hand, NK clones displaying "specificity 1" and expressing the GL183-EB6+ phenotype failed to lyse Cw4+ target cells. Addition of the F(ab')2 fragments of either GL183 or EB6 mAb as well as the XA141 mAb of IgM isotype (specific for the EB6 molecules) completely restored the lysis of Cw3-transfected P815 cells by the Cw3-specific NK clones EX2 and EX4. Similarly, both the entire EB6 mAb, its F(ab')2 fragment and the XA141 mAb reconstituted the lysis of C1R, a Fc gamma R- target cell expressing Cw4 as the only serologically detected class I antigen. Thus, it appears that masking of different members of p58 molecules prevents recognition of "protective" MHC class I alleles and thus the delivering of inhibitory signals. Further support to the concept that p58 molecules represent a NK receptor delivering a negative signal was provided by experiments in which the entire anti-p58 mAbs (of IgG isotype) could inhibit the lysis of unprotected Fc gamma R+ P815 target cells, thus mimicking the inhibitory effect of MHC class I molecules.Keywords
This publication has 23 references indexed in Scilit:
- Involvement of HLA class I alleles in natural killer (NK) cell-specific functions: expression of HLA-Cw3 confers selective protection from lysis by alloreactive NK clones displaying a defined specificity (specificity 2).The Journal of Experimental Medicine, 1992
- Alloantigen recognition by two human natural killer cell clones is associated with HLA-C or a closely linked gene.Proceedings of the National Academy of Sciences, 1992
- CD69-mediated pathway of lymphocyte activation: anti-CD69 monoclonal antibodies trigger the cytolytic activity of different lymphoid effector cells with the exception of cytolytic T lymphocytes expressing T cell receptor alpha/beta.The Journal of Experimental Medicine, 1991
- To thine own self be true …Current Biology, 1991
- A novel surface antigen expressed by a subset of human CD3- CD16+ natural killer cells. Role in cell activation and regulation of cytolytic function.The Journal of Experimental Medicine, 1990
- Two subsets of human T lymphocytes expressing gamma/delta antigen receptor are identifiable by monoclonal antibodies directed to two distinct molecular forms of the receptor.The Journal of Experimental Medicine, 1988
- Regulation of cytolytic activity in CD3- and CD3+ killer cell clones by monoclonal antibodies (anti-CD16, anti-CD2, anti-CD3) depends on subclass specificity of target cell IgG-FcR.1987
- NK susceptibility varies inversely with target cell class I HLA antigen expression.The Journal of Immunology, 1987
- Antigen-like effects of monoclonal antibodies directed at receptors on human T cell clones.The Journal of Experimental Medicine, 1983
- Direct demonstration of the clonogenic potential of every human peripheral blood T cell. Clonal analysis of HLA-DR expression and cytolytic activity.The Journal of Experimental Medicine, 1983