Parametric hidden Markov models for gesture recognition
- 1 September 1999
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Pattern Analysis and Machine Intelligence
- Vol. 21 (9), 884-900
- https://doi.org/10.1109/34.790429
Abstract
A method for the representation, recognition, and interpretation of parameterized gesture is presented. By parameterized gesture we mean gestures that exhibit a systematic spatial variation; one example is a point gesture where the relevant parameter is the two-dimensional direction. Our approach is to extend the standard hidden Markov model method of gesture recognition by including a global parametric variation in the output probabilities of the HMM states. Using a linear model of dependence, we formulate an expectation-maximization (EM) method for training the parametric HMM. During testing, a similar EM algorithm simultaneously maximizes the output likelihood of the PHMM for the given sequence and estimates the quantifying parameters. Using visually derived and directly measured three-dimensional hand position measurements as input, we present results that demonstrate the recognition superiority of the PHMM over standard HMM techniques, as well as greater robustness in parameter estimation with respect to noise in the input features. Finally, we extend the PHMM to handle arbitrary smooth (nonlinear) dependencies. The nonlinear formulation requires the use of a generalized expectation-maximization (GEM) algorithm for both training and the simultaneous recognition of the gesture and estimation of the value of the parameter. We present results on a pointing gesture, where the nonlinear approach permits the natural spherical coordinate parameterization of pointing direction.Keywords
This publication has 22 references indexed in Scilit:
- Space-time gesturesPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2002
- Nonlinear PHMMs for the interpretation of parameterized gesturePublished by Institute of Electrical and Electronics Engineers (IEEE) ,2002
- Recognition of human body motion using phase space constraintsPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2002
- Understanding people pointing: the Perseus systemPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2002
- Parameterized Modeling and Recognition of ActivitiesComputer Vision and Image Understanding, 1999
- Maximum likelihood linear transformations for HMM-based speech recognitionComputer Speech & Language, 1998
- A state-based approach to the representation and recognition of gestureIEEE Transactions on Pattern Analysis and Machine Intelligence, 1997
- Visual learning and recognition of 3-d objects from appearanceInternational Journal of Computer Vision, 1995
- Adaptive Mixtures of Local ExpertsNeural Computation, 1991
- Gesture and the Poetics of ProsePoetics Today, 1991