Preparation and Reactions of 1,3‐Diphosphacyclobutane‐2,4‐diyls That Feature an Amino Substituent and/or a Carbonyl Group

Abstract
The preparation and properties of a 1-amino-1,3-diphosphacyclobutane-2,4-diyl and a 1-benzoyl-1,3-diphosphacyclobutane-2,4-diyl, which can be regarded as functionalized cyclic biradical derivatives, were investigated. Hydrolysis of 1-diisopropylamino-3-methyl-2,4-bis(2,4,6-tri-tert-butylphenyl)-1,3-diphosphacyclobutane-2,4-diyl (7), which is formed by reaction of Mes*CP (4; Mes*=2,4,6-tBu3C6H2) with lithium diisopropylamide and iodomethane, resulted in ring-opening of the 1,3-diphosphacyclobutane-2,4-diyl skeleton, as well as de-aromatization of one of the Mes* rings. 3-Oxo-1,3-diphosphapropene 8 and 7-phosphabicyclo[4.2.0]octa-1(8),2,4-triene 9 were the resultant products, and these were subsequently characterized. Isomerization and oxidation of 7 occurred in the presence of TEMPO (2,2,6,6-tetramethyl-1-piperidinoxy) to give the first example of a cyclic dimethylenephosphorane derivative, namely 3-oxo-1,3-diphospha-1,4-diene 10. 1-Benzoyl-3-tert-butyl-2,4-bis(2,4,6-tri-tert-butylphenyl)-1,3-diphosphacyclobutane-2,4-diyl (12) was isolated and characterized from the reaction of 4 with tert-butyllithium and benzoyl chloride. Compound 12 was subsequently heated and underwent rearrangement of the benzoyl group and ring-expansion to afford 1-oxo-1H-[1,3]diphosphole 13. Reaction of 4 with lithium diisopropylamide and benzoyl chloride afforded the 2H-[1,2,4]oxadiphosphinine 15, which was probably formed through the 1,3-diphosphacyclobutane-2,4-diyl intermediate 14. Thermolysis of 15 afforded 1-oxo-1H-[1,3]diphosphole 16 in an Arbuzov-type rearrangement.