Phototransformation of Triclosan in Surface Waters: A Relevant Elimination Process for This Widely Used BiocideLaboratory Studies, Field Measurements, and Modeling
- 10 July 2002
- journal article
- Published by American Chemical Society (ACS) in Environmental Science & Technology
- Vol. 36 (16), 3482-3489
- https://doi.org/10.1021/es025647t
Abstract
The phototransformation of the widely used biocide triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) was quantified for surface waters using artificial UV light and sunlight irradiation. The pH of surface waters, commonly ranging from 7 to 9, determines the speciation of triclosan (pKa = 8.1) and therefore its absorption of sunlight. Direct phototransformation of the anionic form with a quantum yield of 0.31 (laboratory conditions at 313 nm) was identified as the dominant photochemical degradation pathway of triclosan. Combining the photochemical parameters with actual meteorological data and field measurements allowed us to validate a model describing the behavior of triclosan in the water column of a Swiss lake (Lake Greifensee). From August to October 1999, direct phototransformation accounted for 80% of the observed total elimination of triclosan from the lake. The remaining major sink for triclosan was the loss in the outflow. Thus, during the summer season, direct phototransformation appears to be a major elimination pathway of triclosan in this lake. Based on absorption spectra and quantum yield data, the phototransformation half-lives of triclosan were calculated under various environmental conditions typical for surface waters. Daily averaged half-lives were found to vary from about 2 to 2000 days, depending on latitude and time of year.Keywords
This publication has 29 references indexed in Scilit:
- Fate of Fluorescent Whitening Agents in the River GlattEnvironmental Science & Technology, 1999
- Degradation of Fluorescent Whitening Agents in Sunlit Natural WatersEnvironmental Science & Technology, 1996
- Transformation Kinetics of Phenols in Water: Photosensitization by Dissolved Natural Organic Material and Aromatic KetonesEnvironmental Science & Technology, 1995
- Input and Dynamic Behavior of the Organic Pollutants Tetrachloroethene, Atrazine, and NTA in a Lake: A Study Combining Mathematical Modeling and Field MeasurementsEnvironmental Science & Technology, 1994
- Oxidation of substituted phenols in the environment: a QSAR analysis of rate constants for reaction with singlet oxygenEnvironmental Science & Technology, 1991
- The Effect of Long-term Use of a Dentifrice Containing Zinc Citrate and a Non-ionic Agent on the Oral FloraJournal of Dental Research, 1988
- Sensitized Photooxidation of Phenols by Fulvic Acid and in Natural WatersEnvironmental Science & Technology, 1987
- Organic compounds in an industrial wastewater. Their transport into sedimentsEnvironmental Science & Technology, 1980
- Free-Radical Oxidants in Natural WatersScience, 1980
- Organic compounds in an industrial Wastewater: a case study of their environmental impactEnvironmental Science & Technology, 1978