Abstract
Nitrate uptake in the epilemnetic waters of a small eutrophic Canadian Shield lake was studied by using a 15N method during summer stratification. Concurrent with inhibition of primary production, 3-(3,4-dichlorophenyl)-1,1-dimethylurea inhibited NO3- assimilation. Nitrate up to 1 mg of N/liter did not affect the rate of primary production during 3 h of incubation. The NO3- fertilizer added to the lake weekly was consumed through algal assimilation in about 3 days. Excretion of the photoassimilated NO3- as dissolved organic nitrogen represented a significant portion of the nutrient incorporated by the cells. Only 40% of the NO3- -15N which disappeared could be accounted for in the particulate fraction. Although the rest was presumably excreted, only 15% of the 15N label was accounted for as cationic dissolved organic nitrogen by isotope assays. These excreted organic forms were predominantly serine and glycine in the dissolved free amino acid fraction. Bacteria as well as algae might be expected to contribute to and modify the extracellular nitrogen pool.