Abstract
The endothermal decomposition of 18 β-quinol clathrates has been studied by thermo-analysis, calorimetry, and X-ray diffraction, and the decomposition process shown to be[Formula: see text]For those symmetrical guest molecules (M) which do not distort the β-quinol cavities from their normal dimensions, both temperatures and enthalpies of clathrate decomposition increase with increasing volume of the guest molecule. For those unsymmetrical guest species which require distortion of the cavities along their c-axis, temperatures and enthalpies of decomposition tend to decrease as the initial distortion required to accommodate the guest increases. Thermal stability of β-quinol clathrates is thus strongly influenced both by the size and shape of the guest molecule.The mechanism of thermal decomposition is suggested to involve a combination of the loss of stabilizing guest–wall interactions, together with increased thermal motion of the interpenetrating networks of hydrogen-bonded quinol molecules.

This publication has 6 references indexed in Scilit: