On the Dynamic Behavior of Hybrid Journal Bearings

Abstract
An analysis of the dynamic behavior of hybrid journal bearings is presented. The analysis accounts for the compressibility of the lubricant in the bearing recesses and supply line. Results show that when the journal is subjected to high frequency excitation the bearing stiffness and damping can change drastically. The behavior is characterized by a “break frequency” beyond which the bearing stiffness increases sharply. This is accompanied by a rapid decrease in bearing damping. It is also shown that the cross-coupling stiffness coefficients are reduced at high excitation frequencies. The asymptotic behavior of the stiffness and damping coefficients is examined at both ends of the frequency spectrum.