Thermodynamics and optical conductivity of unconventional spin density waves
Preprint
- 11 October 2000
Abstract
We consider the possibility of formation of an unconventional spin density wave (USDW) in quasi-one dimensional electronic systems. In analogy with unconventional superconductivity, we develop a mean field theory of SDW allowing for the momentum dependent gap $\Delta({\bf k})$ on the Fermi surface. Conditions for the appearence of such a low temperature phase are investigated. The excitation spectrum and basic thermodynamic properties of the model are found to be very similar to those of d-wave superconductors in spite of the different topology of their Fermi surfaces. Several correlation functions are calculated, and the frequency dependent conductivity is evaluated for various gap functions. The latter is found to reflect the maximum gap value, however with no sharp onset for absorbtion.