DIETARY FACTORS CONCERNED IN ERYTHROPOIESIS—Continued

Abstract
Riboflavin is essential for normal erythropoiesis in rats, dogs, pigs, and monkeys. There is no evidence that this vitamin is required for normal erythropoiesis in man. The anemia in swine is normocytic. Nicotinic acid deficiency is accompanied by a severe anemia in dogs. The type of anemia produced is normochromic and may be either macrocytic or normocytic and is associated with a mild reticulocytosis. Limited observations indicate that the bone marrow is hypoplastic and that erythropoiesis stops at the erythroblastic level. An anemia due to a deficiency of this vitamin has not been demonstrated in other species nor in man. Pyridoxine is essential for normal erythropoiesis in chicks, rats, dogs, and pigs. The anemia is microcytic and slightly hypochromic in type. Anisocytosis, microcytosis, polychromatophilia, and normoblasts can be seen in the blood smear. An irregular reticulocytosis is present. The bone marrow is hyperplastic and there is an increase in the nucleated red blood cells. The anemia is accompanied by hemosiderosis of the tissues, an elevated serum iron level, and degeneration in the nervous system. There is no evidence of an increased rate of hemolysis. No relationship between pyridoxine and erythropoiesis has been demonstrated in man. The "Lactobacillus casei group" includes the norite eluate factor, the L. casei factor from liver, folic acid, the Streptococcus lactis R factor of Keřesztesy et al., the yeast factor of Stokstad, the factor of Hutchings et al., vitamin M11, xanthopterin, vitamin Bc, vitamin Bc conjugate, vitamins B10 and B11, and pyracin. The L. casei factor from liver has been identified as pteroylglutamic acid. The available evidence indicates that the norite eluate factor, folic acid, vitamin M, vitamin Bc, vitamin B10, and vitamin B11 are identical with pteroylglutamic acid. The Streptococcus lactic R factor of Keřesztesy et al. may be pteroic acid. The yeast factor of Stokstad is unidentified. The fermentation factor of Hutchings et al. has been identified as pteroyltriglutamic acid. Vitamin Bc conjugate is now known to be pteroylheptaglutamic acid. Thus the various members of this group are closely related chemically and represent minor alterations of a basic structure. The corresponding deficiency syndromes are probably identical. In the rat the deficiency is manifested by severe normocytic anemia, severe granulocytopenia, leukopenia, and thrombocytopenia. Nucleated red cells appear in the peripheral blood. Bone marrow studies suggest a maturation arrest in the early stage of development of all three of the cellular elements of the blood. The manifestations of the deficiency in the chick are macrocytic anemia, leukopenia, and thrombocytopenia. Again immature red cells are present in the peripheral blood. In the monkey the manifestations of the deficiency are normocytic anemia, leukopenia, and thrombocytopenia. In human beings the synthetic L. casei factor from liver (pteroylglutamic acid) has been shown to be effective in the treatment of various types of macrocytic anemia including pernicious anemia and sprue. The relation of this substance to the antipernicious anemia substance in liver remains to be determined. The extrinsic factor of Castle is still unidentified. It now seems reasonable that it is related in some way to pteroylglutamic acid. It is unlikely that it is identical since the synthetic L. casei factor is effective even in the absence of normal gastric juice. A deficiency of the extrinsic factor in man results in an anemia which is identical with pernicious anemia and the bone marrow is cytologically indistinguishable. An accompanying neutropenia and thrombocytopenia are also frequently seen. The anemia responds rapidly to the parenteral administration of highly purified antipernicious anemia liver extracts and to pteroylglutamic (folic) acid. Achlorhydria is generally not present. Macrocytic anemia of nutritional origin occurring in the tropics varies from this anemia in one important aspect. It fails to respond to highly purified liver extracts. This strongly suggests that the factor responsible for the deficiency is distinct from that of the extrinsic factor of Castle. A deficiency of this factor has been produced in monkeys and the deficiency syndrome consists of a macrocytic anemia with a megaloblastic bone marrow. The anemia fails to respond to highly purified liver extracts which are effective in the treatment of pernicious anemia but does respond to crude liver extracts and to marmite, an autolyzed yeast extract. The relation between this factor and the L. casei factor has not been investigated. The role of ascorbic acid in erythropoiesis is not clear. Although the scorbutic state in both guinea pigs and human beings is frequently accompanied by anemia it is questionable whether the anemia is due specifically to a deficiency of ascorbic acid. Much of the animal experimentation is inconclusive because pure ascorbic acid supplements were not used. Further work in animals is needed. In man it has been both asserted and denied that synthetic ascorbic acid is effective in relieving the anemia. It would seem, however, that there are some scorbutic patients who respond specifically to pure ascorbic acid. The anemia accompanying scurvy has been reported as macrocytic, normocytic, and microcytic. An induced, uncomplicated ascorbic acid deficiency in a human being did not result in anemia. Pantothenic acid deficiency results in a normocytic anemia of moderate degree in pigs in about two-thirds of the animals. There is evidence which suggests that a deficiency of this vitamin in rats may result in anemia, granulocytopenia, and bone marrow hypoplasia. Not all animals show these changes and pantothenic acid, although completely preventive, does not exert a curative action in all animals. There seems to be a relation between pantothenic acid deficiency and a deficiency of the L. casei factor in the rat. Choline deficiency in...