Complex Optical Surfaces Formed by Replica Molding Against Elastomeric Masters

Abstract
Complex, optically functional surfaces in organic polymers can be fabricated by replicating relief structures present on the surface of an elastomeric master with an ultraviolet or thermally curable organic polymer, while the master is deformed by compression, bending, or stretching. The versatility of this procedure for fabricating surfaces with complex, micrometer- and submicrometer-scale patterns was demonstrated by the production of (i) diffraction gratings with periods smaller than the original grating; (ii) chirped, blazed diffraction gratings (where the period of a chirped grating changes continuously with position) on planar and curved surfaces; (iii) patterned microfeatures on the surfaces of approximately hemispherical objects (for example, an optical surface similar to a fly's eye); and (iv) arrays of rhombic microlenses. These topologically complex, micropatterned surfaces are difficult to fabricate with other techniques.