Isolation and genetic analysis of nuclease halo (nuh) mutants of Neurospora crassa

Abstract
Nuclease halo (nuh) mutants of the ascomycete Neurospora crassa have been isolated which are characterized reduced release of deoxyribonuclease (DNase) activities from colonies grown on sorbose-containing agar media. To identify nuh mutants, mutagenized isolates were transferred to commercial DNase test agar, or grown on minimal medium and then overlayed with agar that contained heat-denatured DNA. DNase activity was visualized by acid precipitation which produced clear rings of digestion (haloes) around the colonies. To identify the number of genes in which mutations lead to reduced release of nuclease activity, eleven nuh mutants were checked for close linkage and linked pairs were tested for complementation. These mutants were assigned to eight genes, and all except one were mapped in six small regions of the Neurospora linkage maps. In addition, among a large number of existing mutants which were tested for nuclease haloes, two mutants were found that showed the Nuh phenotype, namely uvs-3 and uvs-6. One of the isolated nuh mutants was also found to be sensitive to UV and was mapped close to uvs-3; it may represent a new allele of this gene. As a first step towards identification of genuine nuclease mutants, extensively backcrossed strains of mutants from different genes have been assayed for nuclease activity with denatured DNA in extracts. A pronounced reduction, compared to wild type at the same stage of growth, was found in uvs-3 and also in nuh-3, a mutant that is not UV-sensitive.