Making ultracold molecules in a two color pump-dump photoassociation scheme using chirped pulses
Preprint
- 14 August 2005
Abstract
This theoretical paper investigates the formation of ground state molecules from ultracold cesium atoms in a two-color scheme. Following previous work on photoassociation with chirped picosecond pulses [Luc-Koenig et al., Phys. Rev. A {\bf 70}, 033414 (2004)], we investigate stabilization by a second (dump) pulse. By appropriately choosing the dump pulse parameters and time delay with respect to the photoassociation pulse, we show that a large number of deeply bound molecules are created in the ground triplet state. We discuss (i) broad-bandwidth dump pulses which maximize the probability to form molecules while creating a broad vibrational distribution as well as (ii) narrow-bandwidth pulses populating a single vibrational ground state level, bound by 113 cm$^{-1}$. The use of chirped pulses makes the two-color scheme robust, simple and efficient.All Related Versions
- Version 1, 2005-08-14, ArXiv
- Published version: Physical Review A, 73 (3), 033408.