The Function of Chemo- and Mechanoreceptors in Lobster (Homarus Americanus) Feeding Behaviour

Abstract
The behaviour of lobsters preying on live mussels (Mytilus edulis) was observed before and after chemosensory or chemosensory-mechanosensory deafferentation of different sensory appendages. Deafferentation of the antennules, leg tips, or maxillipeds (but not the carapace or proximal leg segments) interfered with feeding performance by causing an increase in the time necessary to crush a mussel after search initiation. In addition, deafferentation of the leg tips or the maxillipeds caused a decline in number of mussels crushed but for different reasons: leg-treated lobsters walked over the mussels without picking them up, whereas maxilliped-treated lobsters grasped the mussels as usual but either did not crush or did not eat them as readily as did normal lobsters. Deafferentation of leg chemoreceptors resulted in the same behavioural deficiencies as deafferentation of leg chemo-and mechanoreceptors, demonstrating that it is the leg chemoreceptors that are essential in releasing this grasping response. Chemoreceptors on different appendages of lobsters therefore fulfill different functional roles in their feeding behaviour.