The Induction of Bone by an Osteogenic Protein and the Conduction of Bone by Porous Hydroxyapatite

Abstract
The influence of the addition of an osteoinductive protein, capable of inducing extraskeletal ossification, on bone ingrowth into coralline porous hydroxyapatite was evaluated in the rabbit using a calvarium onlay model. Twenty-three rabbits received hydroxyapatite implants (10 x 10 x 2 mm) prepared with and without osteoinductive protein. These were implanted on the frontal bone and secured by wire fixation after 0.25 mm of the cortical surface was abraded. The implants were harvested at 3 and 4 months and analyzed for percentage of bone ingrowth by histologic examination of decalcified H&E sections and by scanning electron microscope backscatter image analysis. The osteoinductive protein-treated implants demonstrated significantly greater amounts of bone ingrowth at both 3 (52.0 versus 10.3 percent; p less than 0.001) and 4 months (66.1 versus 39.2 percent; p less than 0.005) than the untreated implants. The type of bone found in all osteoinductive protein-treated implants was predominantly lamellar. Untreated implants contained mostly woven bone at 3 months, with increasing amounts of lamellar bone appearing at 4 months. These results suggest that the combination of a bone-inducing protein and a suitable osteoconductive matrix may provide an alternative to bone grafting.