Abstract
The chiral ligand (−)-sparteine and PdCl2 catalyze the enantioselective oxidation of secondary alcohols to ketones and thus effect a kinetic resolution. The structural features of sparteine that led to the selectivity observed in the reaction were not clear. Substitution experiments with pyridine derivatives and structural studies of the complexes generated were carried out on (sparteine)PdCl2 and indicated that the C1 symmetry of (−)-sparteine is essential to the location of substitution at the metal center. Palladium alkoxides were synthesized from secondary alcohols that are relevant steric models for the kinetic resolution. The solid-state structures of the alkoxides also confirmed the results from the pyridine derivative substitution studies. A model for enantioinduction was developed with C1 symmetry and Cl as key features. Further studies of the diastereomers of (−)-sparteine, (−)-α-iso- and (+)-β-isosparteine, in the kinetic resolution showed that these C2-symmetric counterparts are inferior ligands in this stereoablative reaction [Mohr, J. T., Ebner, D. C., and Stoltz, B. M. Org. Biomol. Chem. 2007, 5, 3571−3576].