Efficiency Enhancement of Organic Solar Cells by Using Shape‐Dependent Broadband Plasmonic Absorption in Metallic Nanoparticles
Top Cited Papers
- 6 January 2013
- journal article
- research article
- Published by Wiley in Advanced Functional Materials
- Vol. 23 (21), 2728-2735
- https://doi.org/10.1002/adfm.201202476
Abstract
It is been widely reported that plasmonic effects in metallic nanomaterials can enhance light trapping in organix solar cells (OSCs). However, typical nanoparticles (NP) of high quality (i.e., mono‐dispersive) only possess a single resonant absorption peak, which inevitably limits the power conversion efficiency (PCE) enhancement to a narrow spectral range. Broadband plasmonic absorption is obviously highly desirable. In this paper, a combination of Ag nanomaterials of different shapes, including nanoparticles and nanoprisms, is proposed for this purpose. The nanomaterials are synthesized using a simple wet chemical method. Theoretical and experimental studies show that the origin of the observed PCE enhancement is the simultaneous excitation of many plasmonic low‐ and high‐order resonances modes, which are material‐, shape‐, size‐, and polarization‐dependent. Particularly for the Ag nanoprisms studied here, the high‐order resonances result in higher contribution than low‐order resonances to the absorption enhancement of OSCs through an improved overlap with the active material absorption spectrum. With the incorporation of the mixed nanomaterials into the active layer, a wide‐band absorption improvement is demonstrated and the short‐circuit photocurrent density (Jsc) improves by 17.91%. Finally, PCE is enhanced by 19.44% as compared to pre‐optimized control OSCs. These results suggest a new approach to achieve higher overall enhancement through improving broadband absorption.Keywords
This publication has 46 references indexed in Scilit:
- Surface Plasmon and Scattering‐Enhanced Low‐Bandgap Polymer Solar Cell by a Metal Grating Back ElectrodeAdvanced Energy Materials, 2012
- Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar CellsAdvanced Materials, 2012
- Efficient Inverted Polymer Solar Cells with Directly Patterned Active Layer and Silver Back GratingThe Journal of Physical Chemistry C, 2012
- Harnessing plasmonics for solar cellsNature Photonics, 2012
- Size effects of metal nanoparticles embedded in a buffer layer of organic photovoltaics on plasmonic absorption enhancementJournal of Physics D: Applied Physics, 2012
- Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layersApplied Physics Letters, 2011
- Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT–PSS layerJournal of Materials Chemistry, 2011
- Plasmonic Polymer Tandem Solar CellACS Nano, 2011
- Enhancement of Donor–Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au NanoparticlesAngewandte Chemie International Edition, 2011
- Plasmonics for improved photovoltaic devicesNature Materials, 2010