Basement membrane component changes in nerve allografts and isografts

Abstract
This study describes immunocytochemical changes in laminin, which is an integral basement membrane (BM) component, during axonal regeneration through antigenic nerve allografts and nonantigenic nerve isografts. In normal rat nerve, laminin was localized in the BM of Schwann cells and the perineurium. During nerve allograft rejection, the perineurium and Schwann cells disappeared. However, the Schwann cell BMs persisted and became distorted and collapsed. In isografted nerves, the perineurium and Schwann cells were present, and only a few Schwann cell BMs appeared to be distorted; however, the staining for laminin was faint, indicating a possible BM breakdown. A new BM appeared as small rings around the Schwann cells after they had become associated with regenerated axons. Because only a limited axonal regeneration occurred in allografts as compared to isografts, it is concluded that the viable Schwann cells, and their BM architecture, are essential for regeneration through long nerve grafts.