Synthesis of continuous boron nitride nanofibers by solution coating electrospun template fibers

Abstract
Continuous boron nitride nanofibers (BNNFs) have been synthesized from boric oxide (B(2)O(3)) coatings deposited on stabilized electrospun polyacrylonitrile fibers (S-PANFs). The B(2)O(3) overcoatings were prepared by impregnating the S-PANFs with B(2)O(3) ethanol solutions. By successive heat treatments at 800 degrees C in NH(3)/O(2) mixture, 1100 degrees C in pure NH(3), and 1500 degrees C in N(2), the S-PANFs were fully removed and the B(2)O(3) coatings deflate to form solid fibers and transform into the BNNFs. The S-PANF template was fully removed by introducing O(2) during nitridation, and thus resulted in the formation of the BNNFs. The diameter of the BNNFs can be effectively controlled by changing the mass concentration of the B(2)O(3) solution, and diameters from 43 to 230 nm were obtained by changing the B(2)O(3) mass concentration from 0.25% to 4.8%. The obtained BNNFs are crystallized with the (002) planes oriented in parallel to the fiber axis. This method provides a powerful tool for obtaining BNNFs with controllable diameters, especially extremely thin BNNFs.