Arabidopsis TCH3 encodes a novel Ca2+ binding protein and shows environmentally induced and tissue-specific regulation.

Abstract
The Arabidopsis touch (TCH) genes are up-regulated in response to various environmental stimuli, including touch, wind, and darkness. Previously, it was determined that TCH1 encodes a calmodulin; TCH2 and TCH3 encode calmodulin-related proteins. Here, we present the sequence and genomic organization of TCH3. TCH3 is composed of three repeats; remarkably, the first two repeats share 94% sequence identity, including introns that are 99% identical. The conceptual TCH3 product is 58 to 60% identical to known Arabidopsis calmodulins; however, unlike calmodulin, which has four Ca2+ binding sites, TCH3 has six potential Ca2+ binding domains. TCH3 is capable of binding Ca2+, as demonstrated by a Ca(2+)-specific shift in electrophoretic mobility. 5' Fragments of the TCH3 locus, when fused to the beta-glucuronidase (GUS) reporter gene, are sufficient to confer inducibility of expression following stimulation of plants with touch or darkness. These TCH3 sequences also direct expression to growing regions of roots, vascular tissue, root/shoot junctions, trichomes, branch points of the shoot, and regions of siliques and flowers. The pattern of expression of the TCH3/GUS reporter genes most likely reflects expression of the native TCH3 gene, because immunostaining of the TCH3 protein shows similar localization. The tissue-specific expression of TCH3 suggests that expression may be regulated not only by externally applied mechanical stimuli but also by mechanical stresses generated during development. Consequently, TCH3 may perform a Ca(2+)-modulated function involved in generating changes in cells and/or tissues that result in greater strength or flexibility.