High molecular weight kininogen binds to unstimulated platelets.

Abstract
Studies were performed to determine if the unstimulated platelet membrane has a site for high molecular weight kininogen (HMWK) binding. 125I-HMWK bound to unstimulated platelets. Zn++ was required for 125I-HMWK binding to unstimulated platelets and binding was maximal at 50 microM Zn++. Neither Mg++ nor Ca++ substituted for Zn++ in supporting 125I-HMWK binding to unstimulated platelets, and neither ion potentiated binding in the presence of 50 microM zinc. 125I-HMWK competed with equal affinity with HMWK for binding, and excess HMWK inhibited 125I-HMWK-platelet binding. Only HMWK, not prekallikrein, Factor XII, Factor XI, Factor V, fibrinogen, or fibronectin inhibited 125I-HMWK-platelet binding. 125I-HMWK binding to unstimulated platelets was 89% reversible within 10 min with a 50-fold molar excess of HMWK. Unstimulated platelets contained a single set of saturable, high affinity binding sites for 125I-HMWK with an apparent dissociation constant of 0.99 nM +/- 0.35 and 3,313 molecules/platelet +/- 843. These studies indicate that the unstimulated external platelet membrane has a binding site for HMWK that could serve as a surface to modulate contact phase activation.