Osmoregulation of a Pyrroline-5-Carboxylate Reductase Gene in Arabidopsis thaliana

Abstract
In Arabidopsis thaliana (L.) Heynh. proline can account for up to 20% of the free amino acid pool after salt stress. Proline accumulation occurs in plants mainly by de novo synthesis from glutamate. The last step of the proline biosynthetic pathway is catalyzed by pyrroline-5-carboxylate (P5C) reductase. A gene (AT-P5C1) encoding this enzyme in A. thaliana has been cloned and sequenced. Expression of AT-P5C1 in Escherichia coli resulted in the complementation of a proC mutant to prototrophy. A comparison of the AT-P5C1 primary and secondary structures with those of six P5C reductase of other organisms is presented. With the exception of several functionally important amino acid residues, little conservation in the primary structure is seen; much greater similarity exists in the putative secondary structure. The AT-P5C1 protein is probably cytosolic. Under normal growth conditions, the P5C reductase mRNA level was significantly higher in roots and ripening seeds than in green tissue. A salt treatment of A. thaliana plants resulted in a 5-fold induction of the AT-P5C1 transcript, suggesting osmoregulation of the AT-P5C1 promoter region. Moreover, a time-course experiment indicated that this induction precedes proline accumulation.