Alamethicin incorporation in lipid bilayers: a thermodynamic study

Abstract
Interaction of the peptide antibiotic alamethicin with phospholipid vesicles has been monitored by changes in its circular dichroic and fluorescent properties. The data are consistent with an incorporation of the peptide in the lipid bilayer. Aggregation of alamethicin in the membrane phase is evident from a characteristic concentration dependence of the incorporation, reflecting the existence of a critical concentration. The data can be fully understood in terms of a theoretical approach that includes aggregation and thermodynamic nonideality. Thermodynamic parameters of the peptide-lipid interaction have been evaluated under a variety of conditions of temperature, ionic strength, and lipid type (saturated and unsaturated fatty acid chains.). From the results obtained in this study, one can extrapolate to the incorporation behavior of alamethicin at low concentrations, as they are typical for measurements of conductance across planar lipid films. This leads to a simple explanation of the voltage-gating mechanism of alamethicin in a straightforward way.