Effects of hyperoxia on maximal leg O2 supply and utilization in men

Abstract
We studied O2 transport in the leg to determine if hyperoxia will increase the maximal rate of O2 uptake (VO2max) in exercising muscle. An increase in inspired O2 fraction (FIO2) from 0.21 to 1.00 was postulated to have the following effects: 1) increase the leg VO2max by approximately 5–10%, 2) increase the maximal O2 delivery [arterial O2 concentration.flow (CaO2.Q] by approximately 10%, and 3) raise the leg VO2max in proportion to both the femoral venous PO2 and mean leg capillary PO2. To test these hypotheses, 11 men performed cycle exercise to the highest work rates (WRmax) they could achieve while breathing 100% O2 (hyperoxia), 21% O2 (normoxia), and 12% O2 (hypoxia). Leg VO2 was derived from duplicate measurements of femoral venous blood flow and CaO2 and femoral venous blood O2 concentrations (CVO2) at 20, 35, 50, 92, and 100% WRmax in each FIO2. Femoral venous leg Q (Qleg) was measured by the constant-infusion thermodilution technique, and leg O2 uptake (VO2) was determined by the Fick principle [VO2 = Qleg(CaO2-CVO2)]. Leg VO2max was the mean of duplicate values of VO2 at 100% WRmax for each FIO2. Hyperoxia increased leg VO2max by 8.1% (P = 0.016) and maximal O2 delivery by 10.9% (P = 0.05) without changing Qleg. There was a significant increase in femoral venous PO2 (P < 0.001) that was proportionally greater than the increase in leg VO2max. The results support our first and second hypotheses, providing direct evidence that in normal subjects leg VO2max is limited by O2 supply during normoxia.(ABSTRACT TRUNCATED AT 250 WORDS)