Response of Human Endothelial Cell Antioxidant Enzymes to Hyperoxia

Abstract
To explore the level of regulation of the expression of the major antioxidant enzymes in response to hyperoxia, we exposed human umbilical vein endothelial cells to 95% O2 for 3 and 5 days and measured (1) the steady-state mRNA levels, (2) the activities, and (3) the immunoreactive content of CuZn and Mn superoxide dismutases (SOD), catalase (CAT), and glutathione peroxidase (GP). We found that a 3-day exposure to 95% O2 caused (1) an increase in CuZnSOD mRNA (by 41%), CAT mRNA (by 26%), and GP mRNA (by 173%); (2) an increase in CuZnSOD activity (by 30%), a decrease in CAT activity (by 37%), and an increase in GP activity (by 60%); and (3) an increase in CuZnSOD immunodetectable protein (by 26%) and a loss in CAT immunoreactive protein (by 27%). After a 5-day exposure to 95% O2, there was (1) a 93% increase in CuZnSOD mRNA, a 71% increase in CAT mRNA, and a 127% increase in GP mRNA; (2) a 56% increase in CuZnSOD activity, a 70% decrease in CAT activity, and an 89% increase in GP activity; and (3) a 35% increase in CuZnSOD immunoreactive protein and a 55% loss in CAT immunoreactive protein. There was no change in the steady-state MnSOD mRNA level after 3 days in 95% O2, but a 100% increase was observed on day 5 of oxygen exposure. MnSOD activity was unchanged in cells exposed to hyperoxia for 3 and 5 days. These data suggest that, in human umbilical vein endothelial cells, the regulation of antioxidant enzymes expression in response to O2 is complex and exerted at different levels.