Morphology and membrane properties of neurones in the cat ventrobasal thalamusin Vitro
- 1 December 1997
- journal article
- Published by Wiley in The Journal of Physiology
- Vol. 505 (3), 707-726
- https://doi.org/10.1111/j.1469-7793.1997.707ba.x
Abstract
1. The morphological (n = 66) and electrophysiological (n = 41) properties of eighty-six thalamocortical (TC) neurones and those of one interneurone in the cat ventrobasal (VB) thalamus were examined using an in vitro slice preparation. The resting membrane potential for thirty-seven TC neurones was -61.9 +/- 0.7 mV, with thirteen neurones exhibiting delta oscillation with and without DC injection. 2. The voltage-current relationships of TC neurones were highly non-linear, with a mean peak input resistance of 254.4 M omega and a mean steady-state input resistance of 80.6 M omega between -60 and -75 mV. At potentials more positive than -60 mV, outward rectification led to a mean steady-state input resistance of 13.3 M omega. At potentials more negative than -75 mV, there was inward rectification, consisting of a fast component leading to a mean peak input resistance of 14.5 M omega, and a slow time-dependent component leading to a mean steady-state input resistance of 10.6 M omega. 3. Above -60 mV, three types of firing were exhibited by TC neurones. The first was an accelerating pattern associated with little spike broadening and a late component in the spike after-hyperpolarization. The second was an accommodating or intermittent pattern associated with spike broadening, while the third was a burst-suppressed pattern of firing also associated with spike broadening, but with broader spikes of a smaller amplitude. All TC neurones evoked high frequency (310-520 Hz) burst firing mediated by a low threshold Ca2+ potential. 4. Morphologically TC neurones were divided into two groups: Type I (n = 31 neurones) which had larger soma, dendritic arbors that occupied more space, thicker primary dendrites and daughter dendrites that followed a more direct course than Type II (n = 35). The only electrophysiological differences were that Type I neurones (n = 16) had smaller peak input and outward rectification resistance and spike after-hyperpolarization, but greater peak inward rectification resistance, and exhibited delta oscillation less often than Type II (n = 13). 5. The morphologically identified interneurone exhibited no outward rectification, only moderate inward rectification, and no high frequency firing associated with the offset of negative current steps below -55 mV. This interneurone had a regular accommodating firing pattern, but the spike after-hyperpolarization had a late component, unlike the accommodating firing in TC neurones. 6. Therefore, the differentiation of TC neuronal types in the cat VB thalamus based on their morphology was reflected by differences in peak input resistance, outward rectification and spike after-hyperpolarization, which could be accounted for by their difference in soma size. More importantly, the firing pattern of the majority of TC neurones in the cat VB thalamus were different from those of TC neurones in other sensory thalamic nuclei. 7. Thalamocortical neurones in the cat VB thalamus were also clearly distinguishable from the interneurone based on the presence of their prominent outward rectification, peak inward rectification and robust low threshold Ca2+ potentials.Keywords
This publication has 36 references indexed in Scilit:
- The ‘window’ component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neuronesThe Journal of Physiology, 1997
- On the nature of anomalous rectification in thalamocortical neurones of the cat ventrobasal thalamus in vitroThe Journal of Physiology, 1997
- Low–threshold calcium spike bursts in the human thalamusBrain, 1996
- Architecture of individual dendrites from intracellularly labeled thalamocortical projection neurons in the ventral posterolateral and ventral posteromedial nuclei of catJournal of Comparative Neurology, 1995
- Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the catJournal of Comparative Neurology, 1995
- Cell body and dendritic tree size of intracellularly labeled thalamocortical projection neurons in the ventrobasal complex of catBrain Research, 1994
- Neurotransmitter Actions in the Thalamus and Cerebral CortexJournal Of Clinical Neurophysiology, 1992
- Mediation of thalamic sensory input by both NMDA receptors and non-NMDA receptorsNature, 1986
- Role of the thalamus in generalized penicillin epilepsy: Observations on decorticated catsExperimental Neurology, 1982
- Cells of different sizes in the ventral nuclei project to different layers of the somatic cortex in the catBrain Research, 1982