Role of a Hydrostatic Pressure Gradient in the Formation of Early Ischemic Brain Edema

Abstract
We studied whether a hydrostatic pressure gradient between arterial blood and brain tissue plays a role in the formation of early ischemic cerebral edema after middle cerebral artery (MCA) occlusion in cats. Tissue pressure, regional CBF, and water content were measured from the cortex in the core and the peripheral zone of brain normally perfused by the MCA. Intraluminal arterial pressure was altered at intervals by inflation of an aortic balloon to vary the blood–tissue pressure gradient in the ischemic zone. Brain water content in the ischemic core, where flow fell to 5.5 ml/100 g/min, increased within 1 h of occlusion. After occlusion tissue pressure rose from 7.95 ± 0.72 mm Hg at 1 h to 13.16 ± 1.13 mm Hg at 3 h. When intraluminal pressure was increased, water content increased further, but only at 1 h after occlusion. In the periphery where flow was 18.9 ml/100 g/min during normotension. neither water content nor tissue pressure rose within 3 h of occlusion. Increased intraluminal pressure was accompanied by increased water content only at 3 h. This study indicates that a hydrostatic pressure gradient is an important element in the development of ischemic brain edema, exerting its major effect during the initial phase of the edema process.