Abstract
The paper deals with the numerical solution of the likelihood equations for incomplete data from exponential families, that is for data being a function of exponential family data. Illustrative examples especially studied in this paper concern grouped and censored normal samples and normal mixtures. A simple iterative method of solution is proposed and studied. It is shown that the sequence of iterates converges to a relative maximum of the likelihood function, and that the convergence is geometric with a factor of convergence which for large samples equals the maxi-mal relative loss of Fisher information due to the incompleteness of data. This large sample factor of convergence is illustrated diagrammaticaily for the examples mentioned above. Experiences of practical application are mentioned.

This publication has 2 references indexed in Scilit: