Kinetic study of laser damage initiation by creation of an electron plasma from absorbing nano-inclusions

Abstract
Laser energy deposition and redistribution in metal nanoparticles embedded in SiO2 glass is studied by a kinetic model, which takes into account photon absorption, electron-electron and electron phonon interactions, as well as heat transfer to the glass matrix. The collision operators are usually written in an integral form. In this work, we transform those in differential operators with the use of Landau approximation. This approach allows to perform kinetic calculations beyond the nanosecond time scale. For a laser intensity relevant to high power lasers, the energy deposition on the electron population can lead to a significant Fermi smearing within very short times. An important part of the electron population is driven beyond a typical 10 eV energy, and consequently this can result in the creation of a plasma around the particle.