Catalyzed CO Oxidation at 70 K on an Extended Au/Ni Surface Alloy

Abstract
A Au/Ni(111) surface alloy catalyzes the oxidation of CO at low temperature by at least three distinct mechanisms. At the lowest temperature of 70 K, molecularly adsorbed O2, spectroscopically characterized as peroxo or superoxo species bound at multiple sites with vibrational frequencies of 865 and 950 cm-1, is the reactant with CO. Between 105 and 125 K, CO2 production coincides with O2 dissociation, suggesting a "hot atom" mechanism. Above 125 K, adsorbed CO reacts with atomically adsorbed O atoms. These results show that nanosize Au clusters bound to oxide supports are not a necessary condition for Au-catalyzed, low-temperature CO oxidation.