Molecular mass measurement of intact ribonucleic acids via electrospray ionization quadrupole mass spectrometry

Abstract
The use of electrospray ionization mass spectrometry for the accurate determination of molecular masses of polynucleotides and small nucleic acids is developed. The common problem of gas phase cation adduction that is particularly prevalent in the mass spectrometric analysis of nucleic acids is reduced through the use of ammonium acetate precipitations and by the addition of chemical additives that compete for adduct ions in solution. The addition of chelating agents such as trans-1,2-diaminocyclohexane-N,N,N,′,N′-tetraacetic acid to remove divalent metal ions and triethylamine to displace monovalent cations from the analyte, in conjunction with ammonium acetate precipitation, reduces cation adduction to levels that permit accurate mass analysis (mass errors of less than 0.01%) without further complex cleanup procedures. The potential utility of accurate mass measurements of small ribonucleic acids is discussed.