Phytochrome-induced flavonoid biosynthesis in mustard (Sinapis alba L.) cotyledons. Enzymic control and differential regulation of anthocyanin and quercetin formation

Abstract
Phytochrome-induced increases in enzyme activities for phenylalanine ammonia-lyase (EC 4.3.1.5) and chalcone isomerase (EC 5.5.1.6), and in amounts of the related end products, anthocyanin and the flavonol, quercetin, were measured in cotyledons of mustard (Sinapis alba L.). There was no correlation between the activities of these enzymes and the rate of anthocyanin accumulation; however, some correlation was found with the quercetin accumulation rate. Since anthocyanin and flavonol accumulation is spatially separated in mustard (flavonols in the upper epidermis, anthocyanin in the lower epidermis), it was possible to measure anthocyanin-associated phenylalanine ammonia-lyase independently. This activity correlated well with the accumulation rate for anthocyanin during the first few hours after induction. The phytochrome effect on anthocyanin formation differed from that on quercetin formation: anthocyanin was strongly induced by continuous far-red light and by both continuous red light and red light pulses, whereas quercetin was only effectively induced by continuous far-red light.