TUMORICIDAL CAPACITIES OF MACROPHAGES PHOTODYNAMICALLY ACTIVATED WITH HEMATOPORPHYRIN DERIVATIVE

Abstract
Four days after administration to mice of small amounts (30-600 ng/mouse) of hematoporphyrin derivative (HPD), peritoneal macrophages exhibited a greatly enhanced Fc-receptor mediated phagocytic capacity as assayed by ingestion activity of IgG-coated sheep erythrocytes. Much higher doses (greater than 3000 ng/mouse) did not have this effect. The peritoneal macrophages activated by administration of HPD have tumoricidal capacity for IgG-coated retinoblastoma cells. We then studied in vitro photodynamic activation of macrophages by white and red fluorescent light irradiation of mouse peritoneal cells (mixture of macrophages and B and T lymphocytes) in media containing very low concentrations of HPD. A short (5 s) white fluorescent light exposure (1Wm-2) of peritoneal cells in a medium containing 0.03 ng HPD/mL produced the maximal level of ingestion activity of macrophages. A 15 s red fluorescent light exposure (1Wm-2) of peritoneal cells in a medium containing 0.1 ng HPD/mL produced the maximal level of ingestion activity of macrophages. Thus, photodynamic activation of macrophages with white fluorescent light is more efficient than that with red fluorescent light. This can be explained by the fact that HPD has a large absorption peak at about 364 nm which extends into the visible range, and decreasingly smaller absorption bands at 500, 535, 570 and 630 nm. In vitro photodynamically activated macrophages showed efficient tumoricidal activity regardless of the type (white or red) of light used. These results suggest that a low level of HPD promotes therapeutic immunopotentiation.

This publication has 23 references indexed in Scilit: