Abstract
The heat of hydrogen solution in a metal at infinite dilution ΔH¯ is shown to depend on (1) the distance R between a hydrogen atom and its metallic nearest neighbors, (2) the characteristic band-structure energy ΔE=EF-Es, where EF is the Fermi energy and Es basically the center of the lowest conduction band of the host metal, and (3) the width Wd of the d band of the host metal. The semiempirical relation ΔH¯=αΔE Wd1/2 ? [with α=18.6 (kJ/mol H)(Å4 eV3/2) and β=-90 kJ/mol H if ΔE, Wd, and R are given in units of eV and Å, respectively] reproduces the experimental values of ΔH¯ remarkably well. It also reproduces the volume expansion accompanying hydrogen absorption and predicts the correct interstitial site occupancy of hydrogen in a transition metal. Furthermore, it makes it possible to estimate the binding energy of hydrogen to a vacancy.