Abstract
This paper discusses a recently developed surface energetics criterion for adhesive bonding and fracture and its applications in such diverse areas as structural adhesive bonding, fiber reinforced composites, biomaterials development, and lithographic printing. The theoretical relations describe systematic methods for the surface energy analysis of solid adhesive and adherend surfaces. The surface tension properties for the adhesive and adherend can then be introduced into a modified Griffith fracture mechanics relation to obtain predictions of bond strength under varied conditions of liquid or gas phase immersion such as water and dry air.