Activation and Regeneration of Rhodopsin in the Insect Visual Cycle

Abstract
Light absorption by rhodopsin generates metarhodopsin, which activates heterotrimeric guanine nucleotide-binding proteins (G proteins) in photoreceptor cells of vertebrates and invertebrates. In contrast to vertebrate metarhodopsins, most invertebrate metarhodopsins are thermally stable and regenerate rhodopsin by absorption of a second photon. In experiments with Rh1 Drosophila rhodopsin, the thermal stability of metarhodopsin was found not to be an intrinsic property of the visual pigment but a consequence of its interaction with arrestin (49 kilodaltons). The stabilization of metarhodopsin resulted in a large decrease in the efficiency of G protein activation. Light absorption by thermally stable metarhodopsin initially regenerated an inactive rhodopsin-like intermediate, which was subsequently converted in the dark to active rhodopsin. The accumulation of inactive rhodopsin at higher light levels may represent a mechanism for gain regulation in the insect visual cycle.