Osteogenecity of octacalcium phosphate coatings applied on porous metal implants
- 7 August 2003
- journal article
- research article
- Published by Wiley in Journal of Biomedical Materials Research Part A
- Vol. 66A (4), 779-788
- https://doi.org/10.1002/jbm.a.10454
Abstract
The biomimetic route allows the homogeneous deposition of calcium phosphate (Ca-P) coatings on porous implants by immersion in simulated physiologic solution. In addition, various Ca-P phases, such as octacalcium phosphate (OCP) or bone-like carbonated apatite (BCA), which are stable only at low temperatures, can be deposited. In this pilot study, experiments were designed with a twofold-purpose: (1) to investigate the osteoinduction of OCP-coated and noncoated porous tantalum cylinders and of dense titanium alloy cylinders (5 mm in diameter and 10 mm in length) in the back muscle of goats at 12 and 24 weeks (n = 4); and (2) to compare the osteogenic potentials of BCA-coated, OCP-coated, and bare porous tantalum cylinders in a gap of 1 mm created in the femoral condyle of a goat at 12 weeks (n = 2). In the goat muscle, after 12 weeks the OCP-coated porous cylinder had induced ectopic bone as well as bone within the cavity of the OCP-coated dense titanium cylinder. In the femoral condyle, bone did not fill the gap in any of the porous implants. In contrast with the two other groups, OCP-coated porous cylinders exhibited bone formation in the center of the implant. The nature of the Ca-P coating, via its microstructure, its dissolution rate, and its specific interactions with body fluids, may influence the osteogenecity of the Ca-P biomaterial. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 66A: 779–788, 2003Keywords
This publication has 40 references indexed in Scilit:
- Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratiosBiomaterials, 1997
- Assessment of bioactivity for orthopedic coatings in a gap-healing modelJournal of Biomedical Materials Research, 1997
- Role of material surfaces in regulating bone and cartilage cell responseBiomaterials, 1996
- Geometry of Porous Hydroxyapatite Implants Influences Osteogenesis in Baboons {Papio ursinus)The Journal of Craniofacial Surgery, 1996
- Calcium phosphate plasma‐sprayed coatings and their stability: An in vivo studyJournal of Biomedical Materials Research, 1994
- A histological and histomorphometrical investigation of fluorapatite, magnesiumwhitlockite, and hydroxylapatite plasma‐sprayed coatings in goatsJournal of Biomedical Materials Research, 1993
- The Effect of Partial Coating with Hydroxyapatite on Bone Remodeling in Relation to Porous-coated Titanium-alloy Dental Implants in the DogJournal of Dental Research, 1991
- Histologic evaluation of the osseous adaptation to titanium and hydroxyapatite‐coated titanium implantsJournal of Biomedical Materials Research, 1991
- Heterotopic bone formation around porous hydroxyapatite ceramics in the subcutis of dogs.Japanese Journal of Oral Biology, 1990