Abstract
The transition to turbulence in the convective flow of air between horizontal plates in a circular convection chamber has been investigated. Measurements of the heat flux and the instantaneous spatial temperature field were made simultaneously for a range of Rayleigh number Ra between 3 × 103 and 5 × 104. Ra could be varied by changing the vertical separation or the temperature difference between the plates. The temperature field was measured with either a horizontal or a vertical array of resistance wires mounted so that the flow field could be traversed at velocities much greater than flow velocities characteristic of thermal convection. Slope transitions in the heat flux were found at Ra = 9600 and Ra = 26000. Many measurements of the instantaneous horizontal distribution of temperature for Ra > RaT2 indicate a growth in amplitude of fluctuations with non-dimensional cyclical wavenumbers of 0·4 and greater. The probability of observing these high wavenumber fluctuations also increases as Ra becomes greater than RaT2. The horizontal wavelengths of the different types of temperature fluctuations are compared with the observations of others.