Kinetics and Thermodynamics of the Molecular Mechanism of the Reductive Half-Reaction of Xanthine Oxidase

Abstract
The kinetics and thermodynamics of the reductive half-reaction of xanthine oxidase with xanthine as substrate have been investigated by stopped-flow kinetic measurements. The temperature dependence of the steady-state and transient kinetics of the reductive half-reaction reveals the existence of at least three molecular intermediates during this half-reaction. All the microscopic rate constants and the thermodynamic activation parameters of the elementary steps of the reductive half-reaction have been determined for the first time. The microscopic rate constants and the thermodynamic activation parameters of the individual steps show wide variations in their magnitudes. The present work provides the most detailed and incisive description of the reaction of xanthine oxidase with its physiological substrate xanthine.