Sol–gel hydrothermal synthesis and enhanced biosensing properties of nanoplated lanthanum-substituted bismuth titanate microspheres
- 25 February 2011
- journal article
- research article
- Published by Royal Society of Chemistry (RSC) in Journal of Materials Chemistry
- Vol. 21 (14), 5352-5359
- https://doi.org/10.1039/c0jm03010d
Abstract
Nanoplated lanthanum-substituted bismuth titanate (Bi3.25La0.75Ti3O12, BLTO) microspheres constructed with tens of BLTO nanoplates were synthesized by a sol–gel hydrothermal method. Using nanoplated BLTO microspheres, a novel third-generation H2O2 biosensor was fabricated with loading of myoglobin (Mb) and chitosan (Chi). Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) measurements reveal that partial Bi ions of bismuth titanate (BTO, Bi4Ti3O12) are successfully substituted with La ions by the sol–gel hydrothermal method. UV-visible (UV-vis) and Fourier-transform infrared (FTIR) spectra show that Mb encapsulated in the Mb–Chi–BLTO film can retain its bioactivity well. Comparative experiments witness that the Mb–Chi–BLTO biosensor, compared with the Mb–Chi–BTO biosensor, not only has enhanced direct electron-transfer capacity (e.g., stronger redox peak currents (approximately 3-fold) and a larger heterogeneous electron-transfer rate constant of 12.8 ± 3.3 s−1), but also exhibits a wider linear response to H2O2 in the concentration range of 2–490 μM, higher sensitivity (88 mA cm−2 M−1), a lower Michaelis–Menten constant (0.55 mM) and detection limit (0.14 μM), a shorter response time (2.8 s), and better reproducibility and stability. These results imply that La doping greatly improves electrochemical and electrocatalytic properties of the Mb–Chi–BLTO biosensor, which will open up a new idea for the design of third-generation electrochemical biosensors, and the BLTO-based biosensors are also expected to find potential applications in many areas such as clinical diagnosis and food and environmental detection.Keywords
This publication has 35 references indexed in Scilit:
- Al3+-directed self-assembly and their electrochemistry properties of three-dimensional dendriform horseradish peroxidase/polyacrylamide/platinum/single-walled carbon nanotube composite filmBiosensors and Bioelectronics, 2010
- Programming the detection limits of biosensors through controlled nanostructuringNature Nanotechnology, 2009
- Nanoscale Labels: Nanoparticles and Liposomes in The Development of High-Performance BiosensorsNanomedicine, 2009
- Tryptophan Repressor-Binding Proteins from Escherichia coli and Archaeoglobus fulgidus as New Catalysts for 1,4-Dihydronicotinamide Adenine Dinucleotide-Dependent Amperometric Biosensors and Biofuel CellsAnalytical Chemistry, 2009
- Electrochemical Biosensor of Nanocube-Augmented Carbon Nanotube NetworksACS Nano, 2009
- Coupling ion channels to receptors for biomolecule sensingNature Nanotechnology, 2008
- Electrochemical Glucose BiosensorsChemical Reviews, 2007
- Part II: Coordinated Biosensors – Development of Enhanced Nanobiosensors for Biological and Medical ApplicationsNanomedicine, 2007
- Protein-modified nanocrystalline diamond thin films for biosensor applicationsNature Materials, 2004
- "Plugging into Enzymes": Nanowiring of Redox Enzymes by a Gold NanoparticleScience, 2003