Photoluminescence investigation of InGaAs-InP quantum wells

Abstract
The properties of InGaAs-InP single quantum wells have been studied by using the photoluminescence technique. Samples were grown by atmospheric pressure metalorganic vapor phase epitaxy. The photoluminescence of nominally undoped quantum wells is studied as a function of temperature and excitation power. The role of an excitonic process in 4-K radiative recombinations is pointed out. The best linewidth obtained for a 140-Å well is 4.5 meV, fairly close to the limit imposed by alloy fluctuations in the InGaAs thick layers. Radiative recombination is more and more efficient with decreasing well thickness and higher than in InGaAs bulk material.