Calcium–Binding Allergens: From Plants to Man

Abstract
Calcium–binding proteins contain a variable number of motifs, termed EF–hands, which consist of two perpendicularly placed α–helices and an interhelical loop forming a single calcium–binding site. Due to their ability to bind and transport calcium as well as to interact with a variety of ligands in a calcium–dependent manner, they fulfill important biological functions in eukaryotic cells. After parvalbumin, a three EF–hand fish allergen, calcium–binding allergens were discovered in pollens of trees, grasses and weeds and, recently, as autoallergens in man. Although only a small percentage of atopic individuals displays IgE reactivity to calcium–binding allergens, these allergens may be important because of their ability to cross–sensitize allergic individuals. Conformation and stability as well as IgE recognition of calcium–binding allergens greatly depend on the presence of protein–bound calcium ions. It is thus likely that hypoallergenic derivatives of calcium–binding allergens can be engineered by recombinant DNA technology for immunotherapy of sensitized patients.