STUDIES ON THE SODIUM AND POTASSIUM TRANSPORT IN RABBIT POLYMORPHONUCLEAR LEUKOCYTES

Abstract
Rabbit polymorphonuclear leukocytes obtained from peritoneal exudates, incubated at 37°C. following exposure to 4°C., actively reaccumulate potassium while little or no net extrusion of sodium takes place. Preventing the utilization of oxidative metabolism with potassium cyanide, 2,4-dinitrophenol, or a nitrogen atmosphere does not inhibit the recovery process. Inhibitors blocking anaerobic glycolysis (sodium iodoacetate and sodium fluoride in low concentrations) completely abolish the capacity to reaccumulate potassium and cause a further dissipation of the sodium and potassium gradients. Water movements have been shown to be secondary to cation shifts. It is postulated that separate transport mechanisms exist for sodium and potassium and that the process of potassium reaccumulation relies on anaerobic glycolysis as a source of energy.

This publication has 20 references indexed in Scilit: